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HEAT TRANSFER IN LAMINAR FLOW. 1. 

POWER-LAW FLUID IN ANNULAR DUCT 
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The solution of the Gratz-Nusselt problem for flow of a non-Newtonian power-law liquid in 
annular duct is presented, together with some numerical results enabling description of heat 
transfer in exchangers with dimensionless length exceeding the value 0'01. 

The original Gratz-Nusselt problem is related with the formulation and solution of the mathema
tical model describing heat transfer into liquid in laminar flow through a pipe with a step temper
ature l change taking place on its wall. This term is also used in general for other problems related 
to heat transfer in liquids flowing in ducts of various cross-sections. These problems are usually 
limited to the laminar flow and to heat transfer by axial convection and by radial conduction 
from the walls. Solution of the Gratz-NusseIt problems serves to several practical purposes: 
to estimation of the effect of forced convection on temperature regime of heat transfer units; 
to calculation of heat-exchangers in which the conditions approach the assumptions included 
in the mathematical model of the process; to measurements of thermal conductivity under the 
same conditions as in the previous case. 

We concentrate our attention here to ducts of annular cross-section on whose 
wall of radius R a steep temperature change takes place while the other wall of radius 
xR is insulated and the velocity profile corresponds to the power-law flow model 2

. 

Some limiting cases of these problems have already been solved in literature. 

For the Gratz-Nusselt problem in Newtonian flow through an annular duct an extensive 
numerical material has been tabelated by Lundberg and coworkers3 . Let us name at least the 
study of Brown4 presenting the most accurate numerical results from a number of papers dealing 
with the classical Gratz-Nusselt problem for Newtonian pipe-flow. In the case of plug flow the 
solution leads to a series of Bessel functions 5 ; eventually for the flat duct to a series of trigono
metrical functions. Heat transfer in power-law liquids flowing through a tube has been solved 
by Lyche and Bird6 and Dente7 by the classical method of separation of variables. We have 
completed these results, made them more accurate and we presented them in a form unified for all 
cases of the considered general annular duct, the cases of a tube and a flat channel inclusive. 

Present address: University of Salford, Salford, England. 
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Heat Transfer in Laminar Flow. I . 1817 

THEORETICAL 

Equation of Heat Transfer 

All the mentioned problems, let it be the heat transfer in a pipe, in an annular or 
a flat duct, are commonly described mathematically by the differential equation 
in the dimensionless form 

with boundary conditions 

t = 1 for z ~ 0, t = 0 for y = 0 and z > 0, 

ot/oy = 0 for y = 1 . 

(1) 

(2, 3) 

(4) 

The geometrical simplex x, distinguishing individual geometrical arrangements, 
equals to zero for the pipe, to 1 for the flat duct, to 0 < x < 1 for the annular duct 
where the heat transfer takes place on the outside wail, and to x > 1 for the annular 
duct where heat transfer takes place only on the inside wall. Dimensionless variables 
for the pipe and the annular duct are defined by relations 

(5a,6a) 

and for the flat duct by relations 

(5b,6b) 

Dimensionless velocity is defined for all cases identically as 

w(y) = v/U. (7) 

Dimensionless temperature is then defined relative to the initial temperature of the 
liquid To and the constant temperature of the heat transfer wall Twas 

(8) 

The significance of some of the quantities in individual geometries under considera
tion is given in Fig. 1. 

Solution of Eq. (1) can be written as a series 

t(y, z) = f Ci~(Y) exp [- bTZ] , (9) 
i=l 
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1818 Wichterle, Wein, Ulbrecht: 

where Yj(Y) are eigenfunction and b~ are corresponding eigenvalues obtained by solu
tion of the following system of the Sturm-Liouville type: 

d
2
Yj + 1 - X dYj + b;w(y) Y

j 
= 0 , 

d y 2 1 - y(1 - x) d y 

~ = 0 for y = 0, 

Yj =0 and dYJdy = 0 for y = 1 , 

where w(y) is the standardized laminar velocity profile. 
The values of const'ants cj of the series (9) are given by relation 

f~ ~(y) [1 - y(1 - x)J w(y) dy 

f~ [~(y)]2 [1 - y(1 - x)] w(y) dy , 

resulting from conditions of orthogonality of series ~(y). 
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FIG. 1 

Example of Heat Transfer Described by Eq. (1) with Boundary Conditions (2)-(4) 

(10) 

(11) 

(12) 

(13) 

A Tube, B, 0 annular duct with temperature step change on the outside or inside wall , C 
asymmetrically heated (cooled) fiat duct. 
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The overall temperature field interests an engineer only exceptionally. Usually, 
the sufficient result of solution of the problem is some of integral heat transfer 
quantities for instance the dimensionless mixed mean temperature. It is defined 

asJM = (TM - Tw)/(To - Tw) and if the temperature field is known it can be 
calculated by integration according to 

tM(Z) = -- t(y, Z) w(y) [1 - y(1 - x)] dy . 2 II 
1 + x 0 

(14) 

Temperature TM is the temperature which the liquid flowing out from a given cross
section of the exchanger (z = const.) should have after adiabatic homogenisation. 
1t is obvious that the knowledge of this quantity is sufficient for temperature balance 

of the exchanger or its parts. 
On combining Eqs (9) and (14) we get the series 

00 

tM(Z) = L tMi exp[ -b~ z] , (I 5) 
i= 1 

where coefficients tMi are 

tMi = - ' - y;(y) [1 - y(1 - x)] w(y) dy • 2c. II 
1 + x 0 

(16) 

For determination of constants tMi , b~ it is however necessary to determine at first 
the functions Y/y) , i.e. to solve the above mentioned Sturm-Liouville system (10) 
for the given boundary conditions (11) and (I2). 

Calculation Algorithm 

l'h'e velocity profile of the power-law liquids in annular flow has been obtained 

by integration 2 

(1 - x 2
) f: Ie - ,F/eln- 1 (e - ).2/e) de 

w = I ~ - , 

2 L ~Io le - ).2/eln-l (e - ).2/e)ded~ 
(17) 

where 
e = 1 - y(l - x). (17) 

The value). was calculated by integration ofthe differential equationS 

--). x+ , d)' _ I{ [X - (1 - ).)2]I/n} 
dx ).2 - x 2 

(19) 
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1820 Wichterle, Wein, Ulbrecht: 

with initial conditions 

A = 1 and dAld'X = 1/2 for x = 1 . (20) 

For calculation of eigenvalues and eigenfunctions an iteration procedure based 
on functional properties of the Sturm-Liouville systems described by Berry and de 
Prima9 was used. If we choose an arbitrary [ba, we can find the function [Yi(O)]j 
and its derivation [Y;'(On in the point y = ° by integration of Eq. (10) with initial 
conditions (12). If there is a disagreement with the condition (11) the procedure can 
be repeated with the characteristic value 

[ba+ 1 = [ba + 1 [Yi(O)]j [Y;(On 

fo [Yi(Y)]j [1 - y(l - x)] w(y) dy 
(21) 

until a sufficient accuracy is reached. The sequence rEba} , j = 0, 1,2 . .. converges 
to one of the characteristic values b~, while i is the number of local extremes of the 
function y;(y) in the interval ° ~ y ~ 1 . Since it is desirable to make each calcula
tion only once, the choice of the first approximation is very important. When there 
have not yet been enough data enabling inter- or extrapolation, the estimation based 
on the WKBJ method10 

(22) 

which leads to very acCUrate estimates of the higher and to suitable estimates of the 
lower characteristic values proved to be very useful. 

Calculations were performed on the digital computer NE 503. For integration 
of differential equations, the standard Runge-Kutta-Merson subroutine was used, 
for the quadratures the Romberg method was used with division of the interval 
into 32 parts. The velocity profile calculated according to relation (17) was substituted 
by 32 interpolation third-order parabolas. The algorithm used ensures accuracy 
of five decimals in the result. 

RESULTS 

We have tabulatedll the velocity profiles, three eigenfunctions and eigenvalues, and 
further the coefficients of series (9) and (I5) for 36 combinations of parameters 
x and n. · The constants necessary for substitution into the first three terms of the 
series (15) for calculation of the dimensionless mean mixing temperature are given 
in Table 1. 
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Heat Transfer in Laminar Flow. I. 1821 

TABLE I 

Constants of First Three Terms of Series U 5) 

b2 
1 b~ b~ IMl 1M2 1M3 

1< = 0 

0 5·783 30·471 74·887 0 ·692 0·131 0·053 
0·1 4·940 26 ·696 66·906 0·768 0·122 0·042 
0·25 4·354 24·817 62·900 0·798 0·108 0·036 
0·5 3·949 23 ·456 59·698 0·812 0·101 0·034 
0·75 3·763 22 ·745 58 ·009 0·817 0·099 0·033 

3·657 22·305 56·961 0·819 0·098 0·033 

I< = 0·1 

4·854 26·555 67·011 0·697 0·131 0·053 
0·1 4·302 24·044 61·867 0·764 0·127 0·043 
0·25 3·963 23 ·343 61 ·391 0·793 0·112 0·037 
0·5 3·785 23 ·707 62 ·832 0·818 0·101 0·033 
0·75 3·743 2067 64-408 0·828 0·095 0·031 

3·740 24·971 65·687 0·835 0·091 0·029 

I< = 0·25 

0 4·004 24·345 63 ·989 0·71 8 0·127 0·049 
0·1 3·693 22·974 61 ·365 0·776 0·122 0·041 
0·25 3·505 22 ·885 62·286 0·809 0·108 0·034 
0·5 3-410 23 ·552 64·194 0·832 0·095 0·029 
0·75 3·388 24·189 65·515 0·843 0·089 0·028 

3·386 24·686 66·446 0·849 0·084 0·027 

I< = 0·5 

0 3·218 23·060 62·552 0·755 0·114 0·042 

0·1 3·092 22·511 61 ·709 0·801 0·110 0·036 

0·25 3·012 22·699 63·093 0·831 0·097 0·029 

0·5 2·969 23·343 64·881 0·853 0·085 0·025 

0·75 2·957 23·857 65 ·935 0·863 0·079 0·024 

2·953 24·235 66·625 0·869 0·075 0·023 

I< = 0·75 

0 2·767 22·517 61 ·997 0·786 0·101 0·037 

0·1 2·722 22 ·347 61 ·937 0·823 0·098 0·032 

0· 25 2·688 22·588 63 ·288 0·049 0·087 0·026 

0·5 2·666 23 ·140 64·909 0·869 0·077 0·022 

0·75 2·657 23·569 65 ·845 0·878 0·071 0·021 

2·652 23·883 66·451 0·884 0·067 0·020 

)( = 1 

0 2-467 22·207 61 ·685 O·SII 0·090 0·032 

0·1 2·464 22·237 62·014 0·840 0·088 0·029 

0·25 2·455 22-474 63 ·222 0·863 0·079 0·024 

0·5 2·443 22·945 64·703 0·881 0·069 0·020 

0·75 2·436 23·315 65 ·586 0·890 0·064 0·019 

2·430 23·591 66·162 0·896 0·060 0·018 
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1822 Wichterle, Wein, Ulbrecht: 

The typical shape of eigenfunctions Yi(Y) is plotted in Fig. 2. The temperature 
field t(y, z) for the same case is in Fig. 3. 

Series (9) and (15) converge the faster the greater is the value z. However, already 
at z = 0·01 the series with only the first three terms ensures the determination of di

mensionless temperature with an accuracy 
±0·05. The character of deviations of the 

'·0 
~= 0·'5 

0'4 0·8 

FIG. 3 

temperature field calculated with the use 
of a final number of terms of the series (9) 
from the exact solution is obvious from 
the example given in Fig. 3. 

FIG. 2 

Plot of First Three Characteristic Functions 
Yi(y) for the Case Y. = 0·5; n = 0·5 

c1 = 1·321, c2 = - 0·495, c3 = 0·295. 
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Temperature Field for the Case Y. = 0·5, n = 0·5 
Solid hne denotes exact solution, dashed line the areas calculated according to relation IN = 
N 

= L ci Yi(y) exp [-brz] for N = 1, 2, 3. 
i=1 
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As Reynolds and coworkers12 have shown for the case of Newtonian liquid flowing 
through the annular duct, it is possible to calculate, with the knowledge of solution 
of the Griitz-NusseJt problem for simple boundary conditions (the so-called funda
mental solution), the temperature field even for rather complex boundary conditions 
by mere quadratures without solving again the differential equation. Our solution 
also belongs to fundamental solutions and enables even at boundary conditions 

t = to(X) , for Z = ° , 
t=tw(Z), for y=Oandz=O, 

ot/oy = f(z) , for y = 1, 

to determine the temperature field and the mixed mean temperatures. 

LIST OF SYMBOLS 

cp specific heat (cal g-l deg- 1 ) 

Ii distance from heat transfer wall (cm) 
H distance of walls of flat duct (cm) 
k heatconductivityofliquid(calcm - 1 s-l deg- 1) 

distance from axis of symmetry (cm) 
R radius of wall at which a step temperature change takes place (cm) 
T temperature COC) • 
T M mixed mean temperature (OC) 

To inlet temperature of liquid (0C) 

T w wall temperature COC} 
U mean velocity (cm s - 1) 

point velocity (cm s -1) 

x axial distance from the location of step temperature change 
(!L liquid density (g cm - 3) 

Dimensionless quantities 

eigenvalues 
expansion coefficient, Eq. (9) 
arbitrary function 

y 

flow index Yj 

temperature, Eq. (8) x 
1M mixed mean temperature, Eq. (I4) 

1M ; expansion coefficient, Eq. (15) Q 

10 , Iw arbitrary function C; 

Collection Czechoslov. Chern . Comrnun. IVol. 37/ (1972) 

velocity, Eq. (7) 
transverse coordinate, Eq. (6) 
axial coordinate, Eq. (5) 
eigenfunctions 
geometric simplex of annulus (ratio of wall radii) 
characteristic value of velocity profile 
dimensionless radius, Eq. (I8) 

integration variable 
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